Giải tích lớp 12

Giải bài 2: Cực trị của hàm số

Đây là nội dung khá quan trọng trong chương này, học sinh thường rất hay nhầm lẫn giữa khái niệm cực đại, cực tiểu với khái niệm giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

A. Lí thuyết

I. Khái niệm cực đại, cực tiểu

Định nghĩa: Cho hàm số y=f(x) xác định và liên tục trên khoảng (a,b) (có thể a là $-\infty$, b là $+\infty$) và điểm $x_{0} \in (a,b)$

  • Nếu tồn tại số h>0 sao cho $f(x) <f(x_{0})$ với mọi $x \in (x_{0}-h, x_{0}+h)$ và $x \neq x_{0}$ thì ta nói hàm số f(x) đạt cực đại tại $x_{0}$.
  • Nếu tồn tại số h>0 sao cho $f(x) >f(x_{0})$ với mọi $x \in (x_{0}-h, x_{0}+h)$ và $x \neq x_{0}$ thì ta nói hàm số f(x) đạt cực tiểu tại $x_{0}$.

Chú ý:

1. Nếu hàm số f(x) đạt cực đại (cực tiểu) tại $x_{0}$ thì

  • $x_{0}$ được gọi là điểm cực đại (điểm cực tiểu) của hàm số
  • $f(x_{0})$ được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số.
  • $M(x_{0},f(x_{0}))$ được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2. Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) được gọi chung là cực trị của hàm số.

3. Nếu y=f(x) có đạo hàm trên khoảng (a,b) và đạt cực đại hoặc cực tiểu tại $x_{0}$ thì $f'(x_{0})=0$.

II. Điều kiện đủ để hàm số có cực trị

a12 6

III. Quy tắc tìm cực trị

Cách 1: 

  • Bước 1: Tìm tập xác định.
  • Bước 2: Tính f'(x). Tìm các điểm tại đó $f'(x)=0$ hoặc $f'(x)$ không xác định.
  • Bước 3: Lập bảng biến thiên.
  • Bước 4: Từ bảng biến thiên suy ra các điểm cực trị.

Cách 2:

  • Bước 1: Tìm tập xác định.
  • Bước 2: Tính $f'(x)$. Giải phương trình $f'(x)=0$ và kí hiệu $x_{i}$ (i=1,2,…,n) là các nghiệm của nó.
  • Bước 3: Tính $f”(x)$ và $f”(x_{i})$.
  • Bước 4: Dựa vào dấu của $f”(x_{i})$ suy ra tính cực trị của điểm $x_{i}$

Cụ thể $f”(x_{i}>0$ thì $x_{i}$ là điểm cực tiểu và $f”(x_{i})<0$ thì $x_{i}$ là điểm cực đại.

Ví dụ: Tìm cực trị của hàm số $$f(x)=\frac{x^{4}}{4}-2x^{2}+6.$$

Giải: TXĐ: $D=\mathbb{R}$

Ta có $y’=x^{3}-4x=x(x^{2}-4) \Rightarrow f'(x)=0\Leftrightarrow \left[ \matrix{x=0 \hfill \cr x=-2 \hfill \cr x=-2 \hfill \cr} \right.$

Cách 1: 

Bảng biến thiên

a13 4

Vậy hàm số y=f(x) đạt cực tiểu tại $x=-2$ và $x=2$ ; $f_{CT}=f(\pm 2)=2$.

Hàm số y=f(x) đạt cực đại tại $x=0$ và $f_{CĐ}=f(0)=6$.

Cách 2: Ta có $f”(x)=3x^{2}-4$

$f(\pm 2)=8>0$ nên x=-2 và x=2 là hai điểm cực tiểu.

$f”(0)=-4<0$ nên x=0 là điểm cực đại.

Vậy hàm số y=f(x) đạt cực tiểu tại $x=-2$ và $x=2$ ; $f_{CT}=f(\pm 2)=2$.

Hàm số y=f(x) đạt cực đại tại $x=0$ và $f_{CĐ}=f(0)=6$.

Chú ý: Hàm số đạt cực đại tại x=0 và $f_{CĐ}=f(0)=6$ tuy nhiên hàm số không có GTLN.

Bài tập & Lời giải

Bài 1: Trang 18 – sgk giải tích 12

Áp dụng Quy tắc I, hãy tìm các điểm cực trị của các hàm số sau

a) $y=2x^{3}+3x^{2}-36x-10$.

b) $y=x^{4}+2x^{2}-3$.

c) $y=x+\frac{1}{x}$.

d) $y=x^{3}(1-x^{2})$.

e) $y=\sqrt{x^{2}-x+1}$

Xem lời giải

Bài 2: Trang 18 – sgk giải tích 12

Áp dụng quy tắc II, hãy tìm các điểm cực trị của các hàm số sau

a) $y=x^{4}-2x^{2}+1$;

b) $y=\sin 2x-x$;

c) $y=\sin x +\cos x$;

d) $y=x^{5}-x^{3}-2x+1$.

Xem lời giải

Bài 3: Trang 18 – sgk giải tích 12

Chứng minh rằng hàm số $y=\sqrt{|x|}$ không có đạo hàm tại x=0 nhưng vẫn đạt cực tiểu tại điểm đó.

Xem lời giải

Bài 4: Trang 18 – sgk giải tích 12

Chứng minh rằng với mọi giá trị của tham số m, hàm số $y=x^{3}-mx^{2}-2x+1$ luôn luôn có một điểm cực đại và một điểm cực tiểu.

Xem lời giải

Bài 5: Trang 18  – sgk giải tích 12

Tìm a và b để các cực trị của hàm số $$y=\frac{5}{3}a^{2}x^{3}+2ax^{2}-9x+b$$ đều là những số dương và $x_{0}=-\frac{5}{9}$ là điểm cực đại.

Xem lời giải

Bài 6: Trang 18 – sgk giải tích 12

Xác định giá trị của tham số m để hàm số $y=\frac{x^{2}+mx+1}{x+m}$ đạt cực đại tại $x=2$.

Xem lời giải

Phần tham khảo mở rộng

Dạng 1: Xác định điểm cực đại ( $x_{CD}$), điểm cực tiểu ( $x_{CT}$), giá trị cực đại ($y_{CD}$), giá trị cực tiểu ($y_{CT}$) của hàm số.

Xem lời giải

Dạng 2: Cho hàm số $f_{m}(x)$ (m là tham số thực). Giả sử hàm số có đạo hàm tại $x_{0}$. Tìm tất cả những giá trị thực của m để hàm số đạt cực trị (cực tiểu, cực đại) tại x = $x_{0}$.

Xem lời giải

Dạng 3: Cho hàm số $y = ax^{3} + bx^{2} + cx + d$. Tìm tất cả những giá trị thực của tham số sao cho hàm số thoả mãn một điều kiện nào đó về số lượng của các điểm cực trị (cực đại, cực tiểu).

Xem lời giải

Dạng 4: Cho hàm số $y = ax^{3} + bx^{2} + cx + d$. Tìm tất cả những giá trị thực của tham số sao cho hàm số có hai điểm cực trị $x_{1}$ và $x_{2}$ thoả mãn một điều kiện nào đó.

Xem lời giải

Dạng 5: Cho hàm số $y = ax^{3} + bx^{2} + cx + d$ (C). Giả sử hàm số có hai điểm cực trị, gọi d là đường thẳng đi qua các điểm cực trị của (C). Ta xét một số câu hỏi liên quan đến đường thẳng d, chẳng hạn:

  • Nhận dạng đường thẳng nào là đường thẳng d;
  • Tìm điểm thuộc đường thẳng d.

Xem lời giải

Dạng 6: Cho hàm số $y=ax^{4}+bx^{2}+c$. Tìm tất cả những giá trị thực của tham số sao cho hàm số thỏa mãn một điều kiện nào đó về số lượng các điểm cực trị (cực đại, cực tiểu).

Xem lời giải

Nguyễn Thị Hương Thủy

Cô giáo Nguyễn Thị Hương Thủy tốt nghiệp trường Đại học Sư phạm Hà Nội và hiện đang tham gia giảng dạy môn Ngữ Văn tại trường THPT Chu Văn An. Cô có 20 năm kinh nghiệm giảng dạy, dẫn dắt nhiều thế hệ học sinh đạt những thành tích cao và đặt chân vào các trường đại học danh tiếng. Cô gặt hái được rất nhiều thành công trong sự nghiệp: giải Nhì trong cuộc thi giáo viên giỏi do thành phố Hà Nội tổ chức, tham gia giảng dạy đội tuyển Học sinh giỏi Quốc gia.
Back to top button