Giải tích lớp 12

Giải bài 2: Tích phân

Bài học với nội dung kiến thức về Nguyên hàm. Một kiến thức mới đòi hỏi các bạn học sinh cần nắm được lý thuyết để vận dụng giải quyết các bài toán. Dựa vào cấu trúc SGK toán lớp 12, ConKec sẽ tóm tắt lại hệ thống lý thuyết và hướng dẫn giải các bài tập 1 cách chi tiết, dễ hiểu. Hi vọng rằng, đây sẽ là tài liệu hữu ích giúp các em học tập tốt hơn

A. Tổng hợp kiến thức

I. Khái niệm

  • Cho f(x) là hàm số liên tục trên đoạn [a;b].
  • F(x) là một nguyên hàm của f(x) trên đoạn [a;b].

=> Hiệu số F(b) – F(a) gọi là tích phân từ a -> b .
     Ký hiệu: $\int_{a}^{b}f(x)dx$ với a là cận dưới, b là cận trên, f(x)dx là biểu thức dưới dấu tích phân, f(x) là hàm số dưới dấu tích phân.

Công thức tổng quát

Bạn đang xem bài: Giải bài 2: Tích phân

$\int_{a}^{b}f(x)dx=F(b)-F(a)$

Chú ý:

Với $a=b$ hoặc $a>b$, ta quy ước:

  • $\int_{a}^{b}f(x)dx=0$
  • $\int_{a}^{b}f(x)dx=-\int_{b}^{a}f(x)dx$

==> Ý nghĩa hình học của tích phân

  • Ta nói $\int_{a}^{b}f(x)dx$ là diện tích hình thang cong giới hạn bởi đồ thị của f(x), trục Ox và hai đường thẳng $x=a$ và $x=b$.
$S=\int_{a}^{b}f(x)dx$

II. Tính chất của tích phân

Tính chất 1

$\int_{a}^{b}kf(x)dx=k\int_{a}^{b}f(x)dx$ 

Tính chất 2

$\int_{a}^{b}(f(x)\pm g(x))dx=\int_{a}^{b}f(x)dx\pm \int_{a}^{b}g(x)dx$

Tính chất 3

$\int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx$

III. Phương pháp tính tích phân

  • Phương pháp đổi biến số
  • Phương pháp tính tích phân từng phần

B. Bài tập & Lời giải

Câu 1:Trang 112 – sgk giải tích 12

Tính các tích phân sau:

a) $\int_{-\frac{1}{2}}^{\frac{1}{2}}\sqrt[3]{(1-x)^{2}}dx$

b) $\int_{0}^{\frac{\prod}{2}}\sin (\frac{\prod }{4}-x) dx$

c) $\int_{\frac{1}{2}}^{2}\frac{1}{x(x+1)} dx$

d) $\int_{0}^{2}x(x+1) ^{2}dx$

e) $\int_{\frac{1}{2}}^{2}\frac{1-3x}{(x+1)^{2}}dx$

g) $\int_{-\frac{\prod} {2}}^{\frac{\prod}{2}}\sin 3xcos 5xdx$

Xem lời giải

Câu 2:Trang 112 – sgk giải tích 12

Tính các tích phân sau:

a) $\int_{0}^{2}\left | 1-x \right | dx$

b) $\int_{0}^{\frac{\prod}{2}}\sin^{2}xdx$

c) $\int_{0}^{\ln 2}\frac{e^{2x+1+1}}{e^{x}} dx$

d) $\int_{0 }^{\prod}\sin 2x\cos^{2}xdx$

Xem lời giải

Câu 3: Trang 113 – sgk giải tích 12

Sử dụng phương pháp biến đổi số, tính tích phân:

a) $\int_{0}^{3}\frac{x^{2}}{(1+x)^{\frac{3}{2}}}dx$ đặt $u=x+1$

b) $\int_{0}^{1}\sqrt{1-x^{2}} dx$ đặt $x=\sin t$

c) $\int_{0}^{1}\frac{e^{x}(1+x)}{1+xe^{x}} dx$ đặt $u=1+xe^{x}$

d) $\int_{0}^{\frac{a}{2}}\frac{1}{\sqrt{a^{2}-x^{2}}} dx$, $(a>0)$  đặt  $x=a\sin t$

Xem lời giải

Câu 4:Trang 113 – sgk giải tích 12

Sử dụng phương pháp tích phân tưng phần, hãy tính tích phân:

a) $\int_{0}^{\frac{\prod}{2}}(x+1)\sin xdx$

b) $\int_{1}^{e}x^{2}\ln xdx$

c) $\int_{0}^{1}\ln(1+x)dx$

d) $\int_{0}^{1}(x^{2}-2x-1)e^{-x}dx$

Xem lời giải

Câu 5:Trang 113 – sgk giải tích 12

Tính các tích phân sau:

a) $\int_{0}^{1}(1+3x)^{\frac{3}{2}}dx$

b) $\int_{0}^{\frac{1}{2}\frac{x^{3}-1}{x^{2}-1}}dx$

c) $\int_{1}^{2}\frac{\ln (1+x)}{x^{2}}dx$

Xem lời giải

Câu 6:Trang 113 – sgk giải tích 12

Tính $\int_{0}^{1}x(1-x)^{5}dx$ bằng hai cách:

a) Đổi biến số $u=1-x$

b) Tích phân từng phần.

Xem lời giải

Phần tham khảo mở rộng

Dạng 1: Tính tích phân dùng phương pháp đồng nhất hệ số với phân thức có mẫu ở dạng tích

Xem lời giải

Dạng 2: Tính tích phân của những phân thức có bậc tử và bậc mẫu chênh lệch lớn.

Xem lời giải

Dạng 3: Tính tích phân bằng phương pháp đưa về các phân thức có mẫu số là biểu thức bình phương

Xem lời giải

Dạng 4: Tính tích phân của phân thức có bậc của  tử số lớn hơn bậc mẫu số.

Xem lời giải

Trích nguồn: THPT CHU VĂN AN
Danh mục: Giải tích lớp 12

Nguyễn Thị Hương Thủy

Cô giáo Nguyễn Thị Hương Thủy tốt nghiệp trường Đại học Sư phạm Hà Nội và hiện đang tham gia giảng dạy môn Ngữ Văn tại trường THPT Chu Văn An. Cô có 20 năm kinh nghiệm giảng dạy, dẫn dắt nhiều thế hệ học sinh đạt những thành tích cao và đặt chân vào các trường đại học danh tiếng. Cô gặt hái được rất nhiều thành công trong sự nghiệp: giải Nhì trong cuộc thi giáo viên giỏi do thành phố Hà Nội tổ chức, tham gia giảng dạy đội tuyển Học sinh giỏi Quốc gia.
Back to top button