Giải tích lớp 12

Giải bài 3: Ứng dụng của tích phân trong hình học

Bài học với nội dung kiến thức về Ứng dụng của tích phân trong hình học. Dựa vào cấu trúc SGK toán lớp 12, ConKec sẽ tóm tắt lại hệ thống lý thuyết và hướng dẫn giải các bài tập 1 cách chi tiết, dễ hiểu. Hi vọng rằng, đây sẽ là tài liệu hữu ích giúp các em học tập tốt hơn

A. Tổng hợp kiến thức

I. Tính diện tích hình phẳng

1. Hình giới hạn bởi một đường cong và trục hoành

bai3 c3

Công thức tổng quát

$S=\int_{a}^{b}\left | f(x) \right |dx$

2. Hình giới hạn bởi hai đường cong

Từ hình vẽ:

bai3.1 c3

=> $S=S_{1}-S_{2}=\int_{a}^{b}(f_{1}(x)-f_{2}(x))dx$

Công thức tổng quát

$S=\int_{a}^{b}\left | f_{1}(x) -f_{2}(x)\right | dx$

Chú ý:

  • Ta có thể chia nhỏ từng khoảng giá trị để tính tích phân, sau đó ghép chúng lại để được kết quả tích phan ban đầu.

$S=\int_{a}^{c}\left | f_{1}(x) -f_{2}(x)\right | dx=\left | \int_{a}^{c}(f_{1}(x) -f_{2}(x))dx \right |$

II. Tính thể tích 

1. Thể tích của vật thể

bai3.2 c3

Công thức tổng quát

$V=\int_{a}^{b}S(x)dx$

2. Thể tích khối chóp và khối chóp cụt

bai3.3 c3

  • Với OI = h  ( chiều cao)
  • B là diện tích đáy.

Ta có:

$S(x)=B\frac{x^{2}}{h^{2}}$

 

 

Công thức tổng quát

$V=\int_{0}^{h}S(x)dx$

III. Thể tích khối tròn xoay

bai3.4 c3Công thức tổng quát

$V=\prod \int_{a}^{b}f^{2}(x)dx$

B. Bài tập & Lời giải

Câu 1:Trang 121-sgk giải tích 12

Tính diện tích hình phẳng giới hạn bởi các đường:

a) $y = x^{2}$, $y = x + 2$   

b) $y=\ln \left | x \right |$, $y=1$

c) $y = (x – 6)^{2}$, $y = 6x– x^{2}$

Xem lời giải

Câu 2:Trang 121-sgk giải tích 12

Tính diện tích hình phẳng giới hạn bởi đường cong $y=x^{2}+1$ , tiếp tuyến với đường này tại hai điểm M(2; 5) và trục Oy.

Xem lời giải

Câu 3:Trang 121-sgk giải tích 12

Parabol $y=\frac{x^{2}}{2}$ chia hình tròn có tâm tại gộc toạ độ, bán kính $2\sqrt{2}$ thành hai phần.

Tìm tỉ số diện tích của chúng.

Xem lời giải

Câu 4:Trang 121-sgk giải tích 12

Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường sau quay quanh trục Ox:

a) $y = 1 – x^{2}$ ,$y = 0$

b) $y = \cos x$, $y = 0$, $x = 0$, $x = \prod$

c) $y = \tan x$, $y = 0$, $x = 0$, $x=\frac{\prod}{4}$

Xem lời giải

Câu 5:Trang 121-sgk giải tích 12

Cho tam giác vuông OPM có cạnh OP nằm trên trục Ox. Đặt  $\widehat{POM}=\alpha $

bai6 c3

và OM = R ( $0\leq \alpha \leq \frac{\prod }{3},R>0$ )

Gọi $v$ là khối tròn xoay thu được khi quay tam giác đó xung quanh Ox (H.63).

a) Tính thể tích của $V$ theo $\alpha$ và R.      

b) Tìm $\alpha$ sao cho thể tích $V$ là lớn nhất.  

Xem lời giải

Phần tham khảo mở rộng

Dạng 1: Tính diện tích hình phẳng giới hạn bởi hai đường y=f(x) và y=g(x).

Xem lời giải

Dạng 2: Tìm thể tích khối tròn xoay được giới hạn bởi đồ thị các hàm số y=f(x), y=g(x), y=h(x).

Xem lời giải

Nguyễn Thị Hương Thủy

Cô giáo Nguyễn Thị Hương Thủy tốt nghiệp trường Đại học Sư phạm Hà Nội và hiện đang tham gia giảng dạy môn Ngữ Văn tại trường THPT Chu Văn An. Cô có 20 năm kinh nghiệm giảng dạy, dẫn dắt nhiều thế hệ học sinh đạt những thành tích cao và đặt chân vào các trường đại học danh tiếng. Cô gặt hái được rất nhiều thành công trong sự nghiệp: giải Nhì trong cuộc thi giáo viên giỏi do thành phố Hà Nội tổ chức, tham gia giảng dạy đội tuyển Học sinh giỏi Quốc gia.
Back to top button