Tìm Ước chung lớn nhất (ƯCLN) là một trong những dạng bài tập vận dụng nhiều kiến thức về dấu hiệu chia hết hay số nguyên tố ở học kỳ 1 ở lớp 6.
Vậy làm sao để tìm ƯCLN (Ước chung lớn nhất) một cách chính xác? Là câu hỏi mà nhiều em quan tâm. Bài viết dưới đây Hay học hỏi sẽ chia sẻ với các em cách tìm Ước chung, ước chung lớn nhất của 2 số, 3 số hay nhiều số.
I. Cách tìm Ước chung, Ước chung lớn nhất
Để tìm ước chung lớn nhất (ƯCLN) thì trước tiên các em cần hiểu ước chung là gì? ƯCLN là gì? cách tìm ƯCLN của 2 hay nhiều số như thế nào?
* Lưu ý: Trong bài viết này và ở chương 1 toán 6 chúng ta làm việc với số tự nhiên. (ở chương 2 sẽ có tập số nguyên, khi đó ước và bội có số âm)
1. Ước chung là gì?
• Ước chung của 2 hay nhiều số là ước của tất cả các số đó.
* Ví dụ: Ư(4) = {1; 2; 4} và Ư(6) = {1; 2; 3; 6}
Ước chung của 4 và 6 ký hiệu là: ƯC(4,6) = {1;2}.
⇒ x ∈ ƯC(a,b) nếu a
x và b
x;
2. Ước chung lớn nhất (ƯCLN) là gì?
• Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp ước chung.
* Ví dụ: Ư(12) = {1; 2; 3; 4; 6; 12} và Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}
→ ƯC(12,30) = {1; 2; 3; 6} số lớn nhất trong tập hợp ước chung là 6.
→ Ta nói 6 là ước chung lớn nhất (ƯCLN) của 12 và 30, ký hiệu ƯCLN(12,30)=6.
3. Cách tìm ước chung lớn nhất (ƯCLN)
• Muốn tìm ước chung lớn nhất của 2 hay nhiều số lớn hơn 1, ta thực hiện các bước sau:
– Bước 1: Phẫn tích mỗi số ra thừa số nguyên tố
– Bước 2: Chọn ra các thừa số nguyên tố chung
– Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN cần tìm.
» xem thêm tại hay học hỏi.vn: Cách tìm Ước chung lớn nhất và Bội chung nhỏ nhất
II. Bài tập tìm ước chung, ước chung lớn nhất (ƯCLN)
* Bài 139 trang 56 SGK Toán 6 Tập 1: Tìm ƯCLN của:
a) 56 và 140 ; b) 24, 84, 180
c) 60 và 180 ; d) 15 và 19
° Lời giải:
a) Phân tích ra thừa số nguyên tố: 56 = 23.7; 140 = 22.5.7
– Các thừa số nguyên tố chung là 2; 7.
⇒ ƯCLN(56, 140) = 22.7 = 28 (số mũ của 2 nhỏ nhất là 2; số mũ của 7 đều bằng 1).
b) Ta có: 84 = 22 .3 .7; 24 = 23.3; 180 = 22.32.5
⇒ ƯCLN(24, 84, 180) = 22.3 = 12.
c)- Cách 1: 60 = 22.3.5; 180 = 22.32.5
⇒ ƯCLN (60, 180) = 22.3.5 = 60.
– Cách 2: 60 là ước của 180 nên ƯCLN (60; 180) = 60.
* Nhận xét: Cách 1 là cách thường dùng cho mọi bài toán tìm ƯCLN, cách 2 dùng cho 1 số trường hợp đặc biệt ƯCLN là 1 trong các số cần tìm ước.
d) Ta có: 15 = 3.5; 19 = 19
⇒ ƯCLN(15, 19) = 1.
* Bài 140 trang 56 SGK Toán 6 Tập 1: Tìm ƯCLN của:
a) 16, 80, 176 ; b) 18, 30, 77
° Lời giải:
a) Cách 1: 16 = 24 ; 80 = 24.5 ; 176 = 24.11
⇒ ƯCLN(16, 80, 176) = 24 = 16.
– Cách 2: 80 ⋮ 16; 176 ⋮ 16 nên 16 là ước của 80; 176.
→ Do đó ƯCLN(16, 80, 176) = 16.
b) Ta có: 18 = 2.32 ; 30 = 2.3.5 ; 77=7.11
⇒ ƯCLN(18, 30, 77) = 1 (vì không có thừa số nguyên tố nào chung).
* Bài 142 trang 56 SGK Toán 6 Tập 1: Tìm ƯCLN rồi tìm các ước chung của:
a) 16 và 24 ; b) 180 và 234 ; c) 60, 90, 135
° Lời giải:
a) Ta có 16 = 24 và 24 = 23.3 ⇒ ƯCLN (16, 24) = 23 = 8.
→ ƯC(16, 24) = Ư(8) = {1; 2; 4; 8}.
b) Ta có 180 = 22.32.5 và 234 = 2.32.13 ⇒ ƯCLN(180, 234) = 2.32 = 18.
→ ƯC(180, 234) = Ư(18) = {1; 2; 3; 6; 9; 18}.
c) 60 = 22 .3.5; 90 = 2.32.5; 135 = 33 .5
⇒ ƯCLN(60, 90, 135) = 3.5 = 15.
→ ƯC(60, 90, 135) = Ư(15) = {1; 3; 5; 15}.
* Bài 143 trang 56 SGK Toán 6 Tập 1: Tìm số tự nhiên a lớn nhất, biết rằng 420 ⋮ a và 700 ⋮ a.
° Lời giải:
– Vì 420 ⋮ a và 700 ⋮ a nên a ∈ ƯC(420; 700).
– Theo bài ra, a là số tự nhiên lớn nhất nên a = ƯCLN(420; 700).
– Ta có: 420 = 22.3.5.7; 700 = 22.52.7
⇒ ƯCLN(420, 700) = 22.5.7 = 140
– Kết luận: Vậy a = 140.
* Bài 145 trang 56 SGK Toán 6 Tập 1: Lan có một tấm bìa hình chữ nhật kích thước 75cm và 105cm. Lan muốn cắt tấm bia thành các mảnh nhỏ hình vuông bằng nhau sao cho tấm bìa được cắt hết, không còn thừa mảnh nào. Tính độ dài lớn nhất của cạnh hình vuông (số đo cạnh của hình vuông nhỏ là một số tự nhiên với đơn vị xentimét).
° Lời giải:
– Để tấm bìa được cắt không còn thừa mảnh nào thì cạnh hình vuông phải là ước của chiều rộng và chiều dài tấm bìa.
– Chiều rộng bằng 75cm, chiều dài bằng 105cm.
– Do đó cạnh hình vuông phải là một trong các ƯC(75, 105).
– Độ dài lớn nhất của cạnh hình vuông là ƯCLN(75, 105).
– Ta có : 75 = 3.52 ; 105 = 3.5.7
⇒ ƯCLN(75, 105) = 3.5 = 15.
– Kết luận: Vậy cạnh hình vuông lớn nhất là 15cm.
Hy vọng với bài viết về cách tìm ƯCLN (Ước chung lớn nhất) của 2 số, 3 số ở trên giúp ích cho các em. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để thầy cô trường Trường TCSP Mẫu giáo – Nhà trẻ Hà Nội ghi nhận và hỗ trợ, chúc các em học tốt.
Xem thêm Tìm Ước chung lớn nhất
Tìm Ước chung lớn nhất (ƯCLN) là một trong những dạng bài tập vận dụng nhiều kiến thức về dấu hiệu chia hết hay số nguyên tố ở học kỳ 1 ở lớp 6. Vậy làm sao để tìm ƯCLN (Ước chung lớn nhất) một cách chính xác? Là câu hỏi mà nhiều em quan tâm. Bài viết dưới đây Hay học hỏi sẽ chia sẻ với các em cách tìm Ước chung, ước chung lớn nhất của 2 số, 3 số hay nhiều số. I. Cách tìm Ước chung, Ước chung lớn nhất Để tìm ước chung lớn nhất (ƯCLN) thì trước tiên các em cần hiểu ước chung là gì? ƯCLN là gì? cách tìm ƯCLN của 2 hay nhiều số như thế nào? * Lưu ý: Trong bài viết này và ở chương 1 toán 6 chúng ta làm việc với số tự nhiên. (ở chương 2 sẽ có tập số nguyên, khi đó ước và bội có số âm) 1. Ước chung là gì? • Ước chung của 2 hay nhiều số là ước của tất cả các số đó. * Ví dụ: Ư(4) = {1; 2; 4} và Ư(6) = {1; 2; 3; 6} Ước chung của 4 và 6 ký hiệu là: ƯC(4,6) = {1;2}. ⇒ x ∈ ƯC(a,b) nếu a x và b x; 2. Ước chung lớn nhất (ƯCLN) là gì? • Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp ước chung. * Ví dụ: Ư(12) = {1; 2; 3; 4; 6; 12} và Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30} → ƯC(12,30) = {1; 2; 3; 6} số lớn nhất trong tập hợp ước chung là 6. → Ta nói 6 là ước chung lớn nhất (ƯCLN) của 12 và 30, ký hiệu ƯCLN(12,30)=6. 3. Cách tìm ước chung lớn nhất (ƯCLN) • Muốn tìm ước chung lớn nhất của 2 hay nhiều số lớn hơn 1, ta thực hiện các bước sau: – Bước 1: Phẫn tích mỗi số ra thừa số nguyên tố – Bước 2: Chọn ra các thừa số nguyên tố chung – Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN cần tìm. » xem thêm tại hay học hỏi.vn: Cách tìm Ước chung lớn nhất và Bội chung nhỏ nhất II. Bài tập tìm ước chung, ước chung lớn nhất (ƯCLN) * Bài 139 trang 56 SGK Toán 6 Tập 1: Tìm ƯCLN của: a) 56 và 140 ; b) 24, 84, 180 c) 60 và 180 ; d) 15 và 19 ° Lời giải: a) Phân tích ra thừa số nguyên tố: 56 = 23.7; 140 = 22.5.7 – Các thừa số nguyên tố chung là 2; 7. ⇒ ƯCLN(56, 140) = 22.7 = 28 (số mũ của 2 nhỏ nhất là 2; số mũ của 7 đều bằng 1). b) Ta có: 84 = 22 .3 .7; 24 = 23.3; 180 = 22.32.5 ⇒ ƯCLN(24, 84, 180) = 22.3 = 12. c)- Cách 1: 60 = 22.3.5; 180 = 22.32.5 ⇒ ƯCLN (60, 180) = 22.3.5 = 60. – Cách 2: 60 là ước của 180 nên ƯCLN (60; 180) = 60. * Nhận xét: Cách 1 là cách thường dùng cho mọi bài toán tìm ƯCLN, cách 2 dùng cho 1 số trường hợp đặc biệt ƯCLN là 1 trong các số cần tìm ước. d) Ta có: 15 = 3.5; 19 = 19 ⇒ ƯCLN(15, 19) = 1. * Bài 140 trang 56 SGK Toán 6 Tập 1: Tìm ƯCLN của: a) 16, 80, 176 ; b) 18, 30, 77 ° Lời giải: a) Cách 1: 16 = 24 ; 80 = 24.5 ; 176 = 24.11 ⇒ ƯCLN(16, 80, 176) = 24 = 16. – Cách 2: 80 ⋮ 16; 176 ⋮ 16 nên 16 là ước của 80; 176. → Do đó ƯCLN(16, 80, 176) = 16. b) Ta có: 18 = 2.32 ; 30 = 2.3.5 ; 77=7.11 ⇒ ƯCLN(18, 30, 77) = 1 (vì không có thừa số nguyên tố nào chung). * Bài 142 trang 56 SGK Toán 6 Tập 1: Tìm ƯCLN rồi tìm các ước chung của: a) 16 và 24 ; b) 180 và 234 ; c) 60, 90, 135 ° Lời giải: a) Ta có 16 = 24 và 24 = 23.3 ⇒ ƯCLN (16, 24) = 23 = 8. → ƯC(16, 24) = Ư(8) = {1; 2; 4; 8}. b) Ta có 180 = 22.32.5 và 234 = 2.32.13 ⇒ ƯCLN(180, 234) = 2.32 = 18. → ƯC(180, 234) = Ư(18) = {1; 2; 3; 6; 9; 18}. c) 60 = 22 .3.5; 90 = 2.32.5; 135 = 33 .5 ⇒ ƯCLN(60, 90, 135) = 3.5 = 15. → ƯC(60, 90, 135) = Ư(15) = {1; 3; 5; 15}. * Bài 143 trang 56 SGK Toán 6 Tập 1: Tìm số tự nhiên a lớn nhất, biết rằng 420 ⋮ a và 700 ⋮ a. ° Lời giải: – Vì 420 ⋮ a và 700 ⋮ a nên a ∈ ƯC(420; 700). – Theo bài ra, a là số tự nhiên lớn nhất nên a = ƯCLN(420; 700). – Ta có: 420 = 22.3.5.7; 700 = 22.52.7 ⇒ ƯCLN(420, 700) = 22.5.7 = 140 – Kết luận: Vậy a = 140. * Bài 145 trang 56 SGK Toán 6 Tập 1: Lan có một tấm bìa hình chữ nhật kích thước 75cm và 105cm. Lan muốn cắt tấm bia thành các mảnh nhỏ hình vuông bằng nhau sao cho tấm bìa được cắt hết, không còn thừa mảnh nào. Tính độ dài lớn nhất của cạnh hình vuông (số đo cạnh của hình vuông nhỏ là một số tự nhiên với đơn vị xentimét). ° Lời giải: – Để tấm bìa được cắt không còn thừa mảnh nào thì cạnh hình vuông phải là ước của chiều rộng và chiều dài tấm bìa. – Chiều rộng bằng 75cm, chiều dài bằng 105cm. – Do đó cạnh hình vuông phải là một trong các ƯC(75, 105). – Độ dài lớn nhất của cạnh hình vuông là ƯCLN(75, 105). – Ta có : 75 = 3.52 ; 105 = 3.5.7 ⇒ ƯCLN(75, 105) = 3.5 = 15. – Kết luận: Vậy cạnh hình vuông lớn nhất là 15cm. Hy vọng với bài viết về cách tìm ƯCLN (Ước chung lớn nhất) của 2 số, 3 số ở trên giúp ích cho các em. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để thầy cô trường Trường TCSP Mẫu giáo – Nhà trẻ Hà Nội ghi nhận và hỗ trợ, chúc các em học tốt. Đăng bởi: Trường TCSP Mẫu giáo – Nhà trẻ Hà Nội Chuyên mục: Giáo Dục
Bản quyền bài viết thuộc trường trung học phổ thông Sóc Trăng. Mọi hành vi sao chép đều là gian lận.
Nguồn chia sẻ: Trường THPT Thành Phố Sóc Trăng (thptsoctrang.edu.vn)
Die höchste Kaufkraft unter den Stadtteilen besitzt Sonnenberg mit ca.
Damit ist Wiesbaden die zehntwohlhabendste
Großstadt Deutschlands sowie die zweitwohlhabendste Großstadt in Hessen nach Frankfurt
(24.310 Euro). Vorsitzende des Jugendparlaments ist Musa Yolver (Stand
September 2024).
Die Wiesbadener Casino-Gesellschaft hat es sich zur
Aufgabe gemacht, das gesellschaftliche und kulturelle Leben in der Stadt Wiesbaden zu pflegen.
Nur eine dort mit „Wiesbaden Civilcasino“ betextete Postkartenansicht zeigt eine
andere Gebäudefront. Der Architekt Wilhelm Bogler baute in den Jahren von 1872 bis 1874 im Historischen Fünfeck
Wiesbadens das Palais Friedrichstraße 22 im
Stil des strengen Historismus mit dreigeschossiger Fassade als Sitz der Casinogesellschaft.
Manch eine Lesegesellschaft änderte ihren Namen und nannte
sich fortan Casinogesellschaft, um den Charakter des Amüsements deutlicher
zu unterstreichen und wieder mehr Interessenten in die Räumlichkeiten zu locken. Die Gesellschaftsrunden waren zunächst als
Lesegesellschaften ausgelegt, die dem Wunsch nach Bildung und Information entgegenkamen. Seit ihrer Gründung hatte es sich die Wiesbadener Casino-Gesellschaft zur Aufgabe gemacht,
das gesellschaftliche und kulturelle Leben der Stadt zu fördern und zu pflegen.
References:
https://online-spielhallen.de/mr-bet-casino-erfahrungen-ein-umfassender-blick-auf-meine-spieljahre/
Du kannst im Powbet Casino ohne eine native App spielen. Die
Plattform ist umfangreich und hält neben den Casinospielen auch Sportwetten bereit.
So kannst du zum Beispiel Gold Saloon VIP mit bis zu 20.000€ pro Runde
spielen. Du kannst mit flexiblen Einsätzen und Limits spielen. Mit diesen kannst
du um zusätzliche Belohnungen wie Cash-Preise, Freispiele oder
Bonusgeld spielen. Die Gewinne aus den Freispielen musst du 40 Mal umsetzen.
Pow Bet casino beschränkt sich nicht nur auf Casinospiele, sondern bietet auch eine Plattform für Sportwetten mit einer Vielzahl
von realen und virtuellen Sportarten, einschließlich Fußball,
Tennis, Basketball, E-Sports und vielem mehr. Das Angebot umfasst klassische Spielautomaten, Powbet live casino, Pokertische,
Tischspiele und spannende Pferdewetten. Dieser Powbet neukundenbonus
in Höhe von 50 Freispielen wöchentlich belohnt Spieler für ihre Beständigkeit und Treue.
Schließlich nutzen heutzutage viele Spieler ihr Smartphone oder Tablet,
um Casino-Spiele zu spielen. Besonders beliebt und in vielen Powbet Bewertungen erwähnt, ist der Willkommensbonus,
den neue Spieler bei ihrer ersten Einzahlung erhalten. Dies
könnte von Freispielen an Spielautomaten bis hin zu erheblichen Rabatten auf Ersteinzahlungen reichen.
References:
https://online-spielhallen.de/nine-casino-bewertung-eine-experten-analyse/