Giáo Dục

Cách giải phương trình chứa ẩn ở mẫu nhanh nhất và bài tập ứng dụng

Cách giải phương trình chứa ẩn ở mẫu nhanh nhất và bài tập ứng dụng

Giải phương trình chứa ẩn ở mẫu một cách nhanh chóng, chính xác không phải học sinh nào cũng dễ dàng nắm bắt. Mặc dù đây là phần kiến thức Đại số 8 vô cùng quan trọng. Bài viết hôm nay, Trường TCSP Mẫu giáo – Nhà trẻ Hà Nội sẽ giới thiệu cùng các bạn cách giải phương trình chứa ẩn ở mẫu nhanh nhất và nhiều bài tập ứng dụng khác. Bạn tìm hiểu nhé !

I. LÝ THUYẾT CẦN GHI NHỚ

1. Phương trình chứa ẩn ở mẫu là gì ?

Phương trình chứa ẩn ở mẫu là phương trình có biểu thức chứa ẩn ở mẫu.

Ví dụ: 

2/y+3=0 là phương trình chứa ẩn ở mẫu (ẩn y)

2-4/x2+2x+7=0 là phương trình chứa ẩn ở mẫu (ẩn x)

Ta thấy, việc tìm điều kiện xác định là rất quan trọng trong việc tìm nghiệm của một phương trình. Sau đây, chúng tôi sẽ hướng dẫn phương pháp tìm điều kiện xác định của một phương trình.

2. Tìm điều kiện xác định của một phương trình

Điều kiện xác định của phương trình là tập hợp các giá trị của ẩn làm cho tất cả các mẫu trong phương trình đều khác 0.

Điều kiện xác định của phương trình viết tắt là ĐKXĐ.

Ví dụ: Tìm điều kiện xác định của các phương trình sau

a) (x – 1)/(x + 2) + 1 = 1/(x – 2).

b) (x – 1)/(1 – 2x) = 1.

Hướng dẫn:

a) Ta thấy x + 2 ≠ 0 khi x ≠ – 2 và x – 2 ≠ 0 khi x ≠ 2.

Do đó ĐKXĐ của phương trình (x – 1)/(x + 2) + 1 = 1/(x – 2) là x ≠ ± 2.

b) Ta thấy 1 – 2x ≠ 0 khi x ≠ 1/2.

Do đó ĐKXĐ của phương trình (x – 1)/(1 – 2x) = 1 là x ≠ 1/2.

II. CÁCH GIẢI PHƯƠNG TRÌNH CHỨA ẨN Ở MẪUi6stvdcjv6vtyqipulvup6ijb4ewvh8ehwn7dajq 2

A. Phương pháp:

Bước 1: Tìm điều kiện xác định.

Bước 2: Quy đồng, khử mẫu, rút gọn đưa về dạng phương trình bậc hai.

Bước 3: Giải phương trình bậc hai.

Bước 4: So sánh với điều kiện và kết luận.

B. Các ví dụ điển hình

Ví dụ 1: Giải phương trình Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn A

Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

Ví dụ 2: Cho phương trình Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9. Chọn khẳng định đúng về nghiệm của phương trình:

Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn D

Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

Ví dụ 3: Giải phương trình Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn

Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án - Toán lớp 9

III. BÀI TẬP CÁCH GIẢI PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

Bài 1:

Giải phương trìnhLý thuyết: Phương trình chứa ẩn ở mẫu

Hướng dẫn:

+ ĐKXĐ: x ≠ 0; x ≠ – 5.

Lý thuyết: Phương trình chứa ẩn ở mẫu

⇒ (2x + 5)(x + 5) – 2x2 = 0

⇔ 2x2 + 10x + 5x + 25 – 2x2 = 0 ⇔ 15x = – 25 ⇔ x = – 5/3.

+ So sánh với ĐKXĐ ta thấy x = – 5/3 thỏa mãn điều kiện.

Vậy phương trình đã cho có tập nghiệm là S = {- 5/3}.

Bài 2: Giải phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x ≠ -3 và x ≠ 2

Phương trình tương đương với (2 – x)(x + 3) – 2(x + 3) = 10(2 – x) – 50

⇔ x2 – 7x – 30 = 0 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Đối chiếu với điều kiện ta có nghiệm của phương trình là x = 10

Bài 3: Giải các phương trình sau:

Bài tập: Phương trình chứa ẩn ở mẫu

Hướng dẫn:

Bài tập: Phương trình chứa ẩn ở mẫu

⇔ (x + 1)2 – (x – 1)2 = 16

⇔ (x2 + 2x + 1) – (x2 – 2x + 1) = 16

⇔ 4x = 16 ⇔ x = 4.

Vây phương trình đã cho có nghiệm x = 4.

Bài tập: Phương trình chứa ẩn ở mẫu

⇔ 2(x2 + x – 2) = 2x2 + 2

⇔ 2x = 6 ⇔ x = 3.

Vậy phương trình đã cho có nghiệm là x = 3.

Bài tập: Phương trình chứa ẩn ở mẫu

⇔ 2(x2 + 10x + 25) – (x2 + 25x) = x2 – 10x + 25

⇔ x2 – 5x + 50 = x2 – 10x + 25

⇔ 5x = – 25 ⇔ x = – 5.

Vậy phương trình đã cho có nghiệm x = – 5.

Bài 4: Giải các phương trình sau:

Bài tập: Phương trình chứa ẩn ở mẫu

Hướng dẫn:

a) ĐKXĐ: x ≠ – 1;x ≠ 3.

Bài tập: Phương trình chứa ẩn ở mẫu

⇔ – x – 1 – x + 3 = x2 + x – x2 + 2x – 1

⇔ 5x = 3 ⇔ x = 3/5.

Vậy phương trình đã cho có nghiệm là x = 3/5.

b) ĐKXĐ: x ≠ 3, x ≠ 4, x ≠ 5, x ≠ 6.

Bài tập: Phương trình chứa ẩn ở mẫu

Vậy phương trình đã cho có nghiệm là x = 0;x = 9/2.

c) ĐKXĐ: x ≠ 1.

Bài tập: Phương trình chứa ẩn ở mẫu

⇔ (x2 – 1 )( x3 + 1) – (x2 – 1)(x3 – 1) = 2(x2 + 4x + 4)

⇔ (x5 + x2 – x3 – 1) – (x5 – x2 – x3 + 1) = 2(x2 + 4x + 4)

⇔ 2x2 – 2 = 2x2 + 8x + 8

⇔ 8x = – 10 ⇔ x = – 5/4.

Vậy phương trình đã cho có nghiệm là x = – 5/4.

Bài 5: Giải phương trìnhToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x ∉ {-2; -3/2; -1; -1/2}

Phương trình tương đương với

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có nghiệm là x = (-5 ± √3)/4 và x = -5/2

Bài 6: Giải phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x ≠ -1 và x ≠ 1/2

Phương trình tương đương với

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

⇔ x = 5 (thỏa mãn điều kiện)

Vậy phương trình có nghiệm là x = 5

Bài 7: Giải phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x≠±2 và x≠-1

Phương trình tương đương với

(x+1)2(x-2) + (x-1)(x+1)(x+2) = (2x+1)(x-2)(x+2)

⇔ (x2 + 2x + 1)(x – 2) + (x2 – 1)(x + 2) = (2x + 1)(x2 – 4)

⇔ x3 – 2x2 + 2x2 – 4x + x – 2 + x3 + 2x2 – x – 2 = 2x3 – 8x + x2 – 4

⇔ x2 + 4x = 0 ⇔Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án(thỏa mãn điều kiện)

Vậy phương trình có nghiệm là x = -4 và x = 0

Bài 8: Giải phương trìnhToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

ĐKXĐ: x ≠ -2/3 và x ≠ 2

Phương trình tương đương với (2x+1)(x-2) = (x+1)(3x+2)

⇔ 2x2 – 4x + x – 2 = 3x2 + 2x + 3x + 2

⇔ x2 + 8x + 4 = 0 ⇔ x = -4 ± 2√3 (thỏa mãn điều kiện)

Vậy phương trình có nghiệm là x = -4 ± 2√3

Trên đây, Trường TCSP Mẫu giáo – Nhà trẻ Hà Nội .vn đã giới thiệu đến quý thầy cố và các bạn học sinh chuyên đề phương trình chứa ẩn ở mẫu và cách giải phương trình chứa ẩn ở mẫu nhanh nhất cùng nhiều bài tập vận dụng khác. Hi vọng, bài viết đã mang đến cho bạn những thông tin hữu ích. Xem thêm cách giải phương trình bậc nhất một ẩn tại đường link này bạn nhé !

Bản quyền bài viết thuộc trường trung học phổ thông Sóc Trăng. Mọi hành vi sao chép đều là gian lận.
Nguồn chia sẻ: Trường THPT Thành Phố Sóc Trăng (thptsoctrang.edu.vn)

Nguyễn Thị Hương Thủy

Cô giáo Nguyễn Thị Hương Thủy tốt nghiệp trường Đại học Sư phạm Hà Nội và hiện đang tham gia giảng dạy môn Ngữ Văn tại trường THPT Chu Văn An. Cô có 20 năm kinh nghiệm giảng dạy, dẫn dắt nhiều thế hệ học sinh đạt những thành tích cao và đặt chân vào các trường đại học danh tiếng. Cô gặt hái được rất nhiều thành công trong sự nghiệp: giải Nhì trong cuộc thi giáo viên giỏi do thành phố Hà Nội tổ chức, tham gia giảng dạy đội tuyển Học sinh giỏi Quốc gia.

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button