Giáo Dục

Cách tìm hình chiếu của 1 điểm lên đường thẳng trong Oxy – Toán 10 chuyên đề

Cùng Trường TCSP Mẫu giáo – Nhà trẻ Hà Nội tìm hiểu Cách tìm hình chiếu của 1 điểm lên đường thẳng trong Oxy – Toán 10 chuyên đề

Vậy cách tìm hình chiếu của 1 điểm lên đường thẳng trong Oxy như thế nào? chúng ta sẽ cùng tìm hiểu qua bài viết dưới đây và cùng xem các bài tập và ví dụ minh họa để hiểu rõ nhé.

Các em có thể xem lại nội dung phương trình tổng quát, phương trình tham số, phương trình chính tắc của đường thẳng nếu các em chưa nhớ rõ phần kiến thức này.

° Cách tìm hình chiếu của 1 điểm lên đường thẳng trong Oxy

* Cách giải 1: 

• Giải sử cần tìm hình chiếu H của điểm M lên đường thẳng (d), ta làm như sau:

– Lập phương trình đường thẳng (d’) qua M vuông góc với (d). (các em có thể xem lại cách viết phương trình đường thẳng đi qua 1 điểm vuông góc với 1 đường thẳng).

– H là hình chiếu vuông góc của M lên (d) ⇒ H là giao của (d) và (d’).

* Cách giải 2:

• Giải sử cần tìm hình chiếu H của điểm A lên đường thẳng (d): ax + by + c = 0 ta làm như sau:

+ Bước 1: Gọi tọa độ điểm H(xH; yH).

Vì điểm H thuộc (d) nên: axH + byH + c = 0 (1).

+ Bước 2: Do AH vuông góc d nên 1650960967itbkau94b1 là VTPT của (d), tức là:

1650960967itbkau94b1 = (xH – xA; yH – yA) và =(a; b) cùng phương

⇒ b(xH – xA) – a(yH – yA )= 0 (2)

+ Bước 3: giải hệ(1) và (2) ta được tọa độ điểm H.

* Ví dụ 1: Tìm hình chiếu của điểm M(3;-1) lên đường thẳng (d) có phương trình: x + 2y – 6 = 0

* Lời giải:

¤ Giải theo cách 1:

– Gọi (d’) là đường thẳng đi qua M và vuông góc với (d)

– Vì (d) có phương trình: x + 2y – 6 = 0 nên VTPT của (d) là: giflatexsmallspacevecn 1551260653 1622534783 2 = (1;2)

– Lại có (d’) ⊥ (d) nên (d’) nhận VTPT của (d) là VTCP ⇒ giflatexsmallspacevecu 1551260655 1622534783 2 =(1;2)

– Phương trình đường thẳng (d’) qua M(3;-1) có VTCP giflatexsmallspacevecu 1551260655 1622534783 2(1;2) là:

15512606579813wxyzbf 1622534783 1 4

– Vì H là hình chiếu của M thì H là giao điểm của (d) và (d’) nên có:

Thay x,y từ (d’) và phương trình (d), ta có:

(3+t) + 2(-1+2t) – 6 = 0

⇔ 5t – 5 = 0 ⇔ t =1

⇒ x = 4, y = 1 là toạ độ điểm H.

Vậy tọa độ H(4;1)

* Ví dụ 2: Tìm hình chiếu của điểm M(1;3) lên đường thẳng (d): x – y = 0

* Lời giải:

¤ Giải theo cách 1:

– Gọi (d’) là đường thẳng đi qua M và vuông góc với (d)

– Vì (d) có phương trình: x – y = 0 nên VTPT của (d) là: giflatexsmallspacevecn 1551260653 1622534783 2 = (1;-1)

– Lại có (d’) ⊥ (d) nên (d’) nhận VTPT của (d) là VTCP ⇒ giflatexsmallspacevecu 1551260655 1622534783 2 =(1;-1)

– Phương trình đường thẳng (d’) qua M(1;3) có VTCP giflatexsmallspacevecu 1551260655 1622534783 2(1;-1) là:

1650960972fyk4egquio

– Vì H là hình chiếu của M thì H là giao điểm của (d) và (d’) nên có:

Thay x,y từ (d’) và phương trình (d), ta có:

(1 + t) – (3 – t) = 0

⇔ 2t = 2 ⇔ t = 1

Vậy tọa độ H là: (2;2)

¤ Giải theo cách 2:

+ Gọi H(a;b) là hình chiếu của M lên (d).

+ Do H ∈ (d) nên ta có: a – b = 0 (1)

Ta có: 1650960974tq34z9awrs = (a – 1; b – 3)

Đường thẳng MH vuông góc với (d) nên:

 = (1;-1) cùng phương với 1650960974tq34z9awrs= (a – 1; b – 3)

hay VTCP: =(1;1) ⊥ 1650960974tq34z9awrs= (a – 1; b – 3)

Suy ra: 1.(a – 1) + 1.(b – 3) = 0

⇔ a + b = 4 (2)

Từ (1) và (2) suy ra: a = 2; b = 2

Vậy tọa độ của H(2;2)

 

Hy vọng với bài viết Cách tìm hình chiếu của 1 điểm lên đường thẳng trong Oxy ở trên hữu ích cho các em. Mọi thắc mắc các em vui lòng để lại bình luận dưới bài viết để Trường TCSP Mẫu giáo – Nhà trẻ Hà Nội ghi nhận và hỗ trợ. Chúc các em học tập tốt!

Bản quyền bài viết thuộc trường trung học phổ thông Sóc Trăng. Mọi hành vi sao chép đều là gian lận.
Nguồn chia sẻ: Trường THPT Thành Phố Sóc Trăng (thptsoctrang.edu.vn)

Nguyễn Thị Hương Thủy

Cô giáo Nguyễn Thị Hương Thủy tốt nghiệp trường Đại học Sư phạm Hà Nội và hiện đang tham gia giảng dạy môn Ngữ Văn tại trường THPT Chu Văn An. Cô có 20 năm kinh nghiệm giảng dạy, dẫn dắt nhiều thế hệ học sinh đạt những thành tích cao và đặt chân vào các trường đại học danh tiếng. Cô gặt hái được rất nhiều thành công trong sự nghiệp: giải Nhì trong cuộc thi giáo viên giỏi do thành phố Hà Nội tổ chức, tham gia giảng dạy đội tuyển Học sinh giỏi Quốc gia.

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button